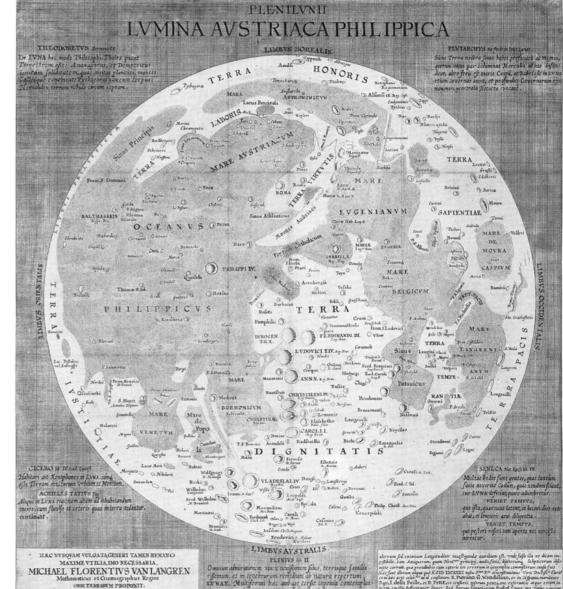
La Lune et la Terre

Influences mutuelles

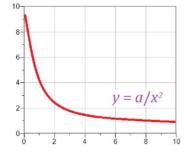
Notions utilisées :

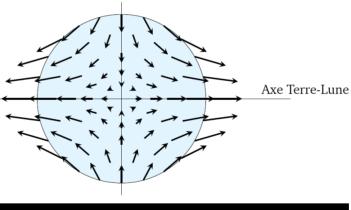

- 1. Introduction
- 2-3. Structure de la matière
- 7. Mécanique classique
- 56. La Lune I
- 57. La Lune II

Pour une meilleure compréhension, certaines explications pourront être légèrement simplifiées/tronquées

Images: Wikipédia sauf mention contraire

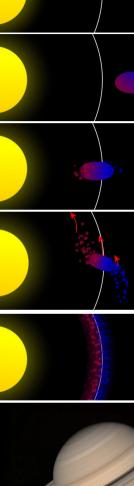
Première carte lunaire 1645, Michael Florent van Langren

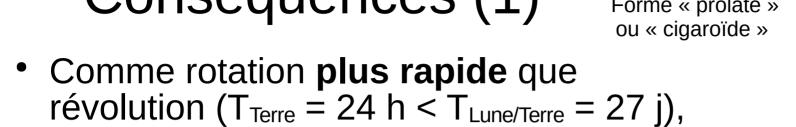

http://www.gencat.cat/llengua/BTPL/ICOS2011/190.pdf



Forces de marée $\overline{F_{1\rightarrow 2}} = -G.\frac{m_1.m_2}{r^2}.\overline{e_{12}} = -\overline{F_{2\rightarrow 1}}$

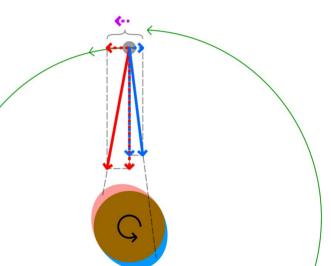
$$\overrightarrow{F}_{1 \to 2} = -G \cdot \frac{m_1 \cdot m_2}{r^2} \cdot \overrightarrow{e}_{12} = -\overrightarrow{F}_{2 \to 1}$$


- Loi de Newton = **mécanique du point**
- Mais dimensions des corps pas toujours négligeables par rapport à la distance qui les sépare
- On soustrait la force du centre de la Lune sur le centre de la Terre
 - → résidus = forces différentielles
- → forces de marée
 - Sur les parties **liquides** (marnage ~10 m)
 - Sur les parties **solides** également (~30 cm)
 - 2 composantes:
 - **Longitudinale**: étirement
 - **Transversale**: compression
- Peuvent entraîner **dislocation** du corps
- « Limite de Roche » = distance à laquelle ces forces dépassent les forces de cohésion interne du satellite $(D_{T-L} \approx 20-40 \times limite de Roche)$



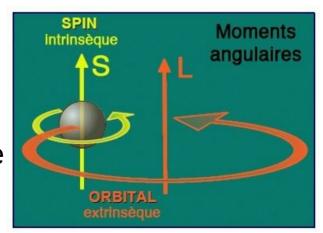
Une comète brisée par les forces de marée de Jupiter

Conséquences (1)

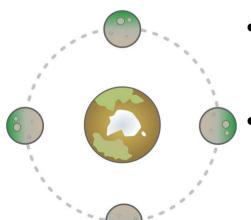

Forme « prolate » ou « cigaroïde »

le bourrelet dû à la marée (dont la forme évolue lentement) dépasse le satellite

répartition dissymétrique


- → couple sur la Lune :
 - Rouge: « pousse la Lune vers l'avant » (= transfère de l'énergie de la Terre à la Lune)
- Bleu : « pousse la Lune vers l'arrière » (= transfère de l'énergie de la Lune à la Terre)
- Bourrelet rouge plus proche → effet plus fort → la force nette (violette) donne de l'énergie à la Lune, prélevée à la Terre → augmentation de la taille de l'orbite

Vue de dessus


Conséquences (2)

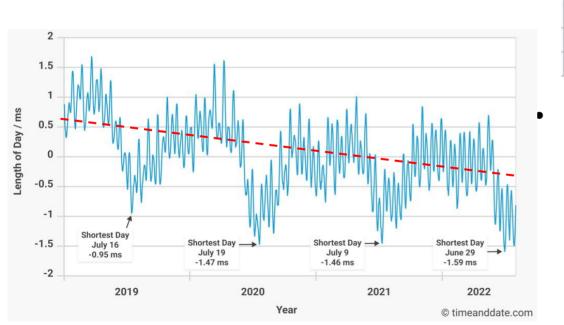
- Donc transfert d'énergie de la Terre vers la Lune
 - L'énergie mécanique de la Terre baisse, celle de la Lune augmente
- Principe de conservation de l'énergie et du moment angulaire
- Théorème de König : moment cinétique total = moment intrinsèque + moment extrinsèque
- ' Conséquences :
 - Ralentissement de la rotation de la Terre
 - **Éloignement de la Lune** de 3,8 cm/an, donc ralentissement de sa révolution (loi de Kepler)
 - → La période de rotation de la Terre et la période de révolution de la Lune convergent
 = « rotation synchrone »
- (+ effets de friction → perte d'énergie)

Rotation synchrone

- Période de rotation du satellite = période de révolution → présente toujours la même face à la planète
- = « verrouillage gravitationnel » ou « verrouillage par effet de marée »
- Peut concerner les 2 corps (ex : Pluton et Charon, Éris et Dysnomie)

- Pluton (~vraies couleurs, r = 1200 km) et Charon (fausses couleurs, r = 600 km)
- Charon évolue sur l'orbite **géo- stationnaire** de Pluton : en plus de présenter toujours la même face, Charon apparaît donc **immobile dans le ciel de Pluton**

Effets réciproques


- La Lune est déjà en rotation synchrone avec la Terre
- Sa période de rotation est égale à sa période de révolution autour de la Terre : 27,3 j (= mois sidéral)
- À l'équateur, v = 16 km/h : on pourrait y courir et regarder toujours dans la même direction (étoiles fixes lointaines) !

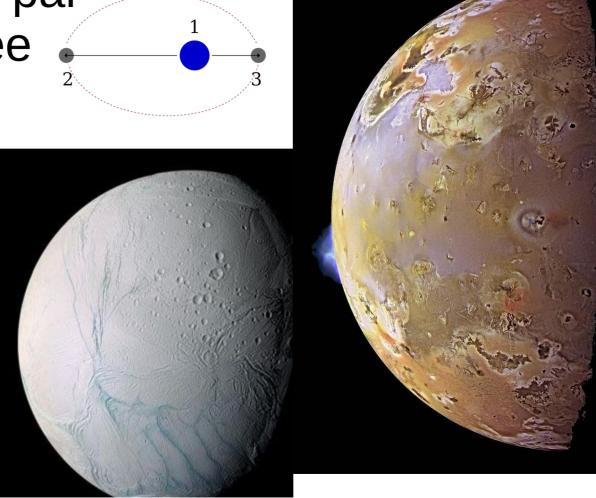
- La rotation de la Terre ralentit pour progressivement s'harmoniser avec la durée du mois lunaire qui s'allonge également
 - s'allonge également → **convergence à 47 jours** (dans 50 milliards d'années...)
 - Note: synchronisation de la Terre avec le Soleil, mais beaucoup plus lente

Variation de la durée du jour

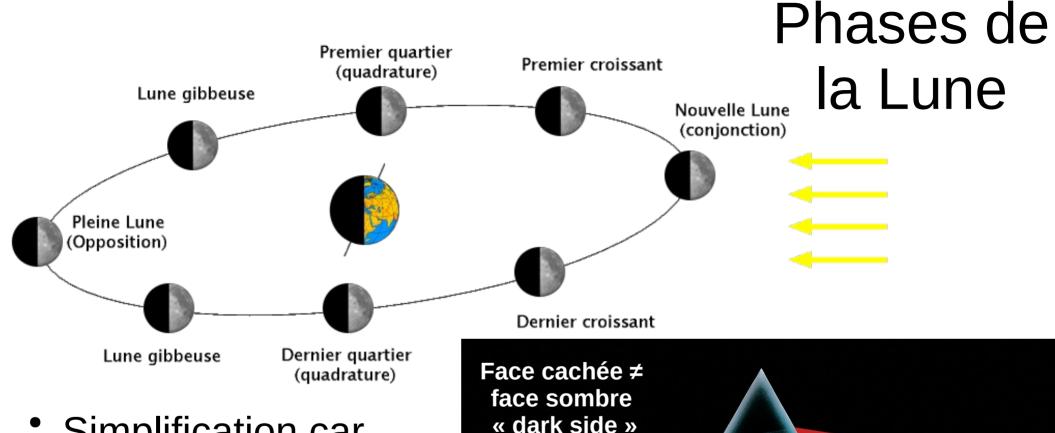
- Variation de la durée du jour : + 2 ms / siècle
- Variation pas constante (plusieurs causes)
 - Éloignement de la Lune → ↓ forces de marée
 → ralentissement du ralentissement
- Lune fixe dans le ciel de la Terre dans ~50 milliards d'années

Période géologique		Nombre de jours par an 18 +	Durée du jour 19 +	
−4 500 Ma	Hadéen	1434	6,1 h	
−2 500 Ma	Archéen	714	12,3 h	
−1 200 Ma	Sténien	493,2	17,7 h	
-500 Ma	Cambrien	425	20,5 h	
-400 Ma	Silurien	410	21,5 h	
-300 Ma	Carbonifère	400	22 h	
-200 Ma	Jurassique	390	22,5 h	
-100 Ma	Crétacé	380	23 h	
0 Ma		365	24 h	
+ ??? Ma		350	25 h	

Fluctuations périodiques de la durée du jour :


- Rapides : effets de l'orbite lunaire
- <u>Lentes</u>: mouvements atmosphériques
- Tendance décroissante : raison inconnue
 → impossibilité de prédire à 1 an

7


Réchauffement par effet de marée

Si le satellite a une **orbite** elliptique, forces de marée plus fortes près du périapside que de l'apoapside

- → processus de friction
 → énergie dissipée sous forme de chaleur dans la croûte des corps considérés
 - → dissipation de l'énergie orbitale
- → rotation synchrone et orbite circulaire
- Mais! Le réchauffement persiste si l'orbite ne peut se circulariser en raison de la présence d'autres objets
 - Io (Jupiter) et son volcanisme
 - Encelade (Saturne) et son eau liquide?

Éruption volcanique sur lo par Galileo, 2006

 Simplification car Terre tourne autour du Soleil pendant cette période

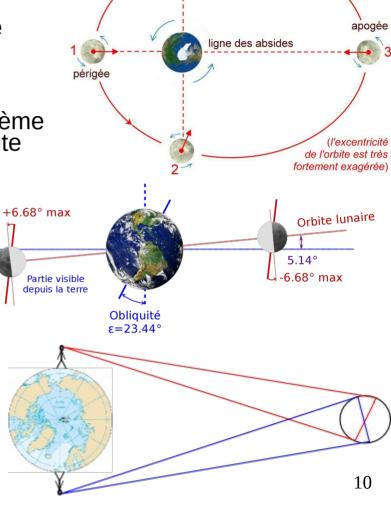
La libration (1)

Rotation synchrone - face visible & face cachée

Mais « libration » = lente oscillation, réelle ou apparente, d'un satellite vue à partir du corps autour duquel il orbite

1. Libration en longitude : en raison de l'excentricité (2ème loi de Kepler : le temps mis pour parcourir 1/4 de l'orbite n'est pas 1/4 de la période) → Est/Ouest

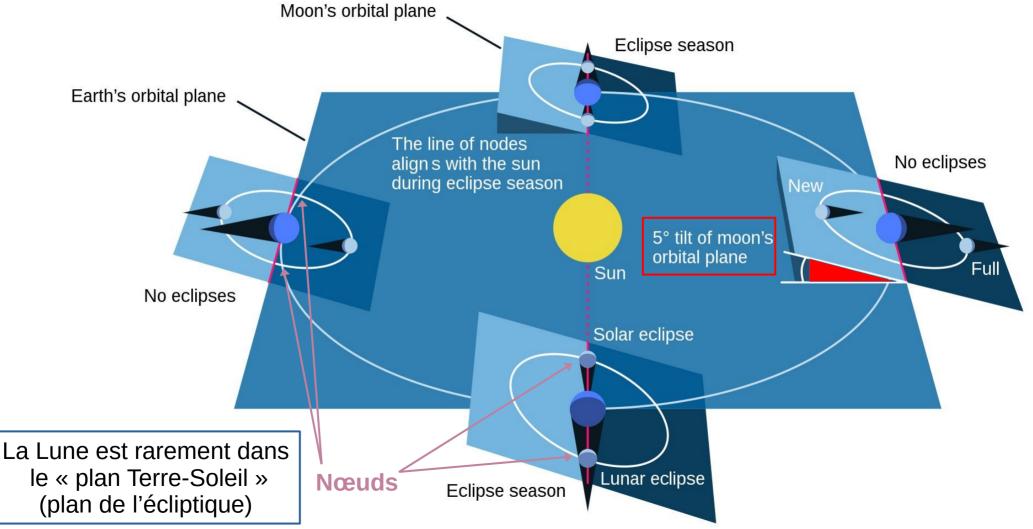
2. <u>Libration en latitude</u>: axe de rotation pas perpendiculaire au plan de l'orbite (max = 6,68°)


+6.6

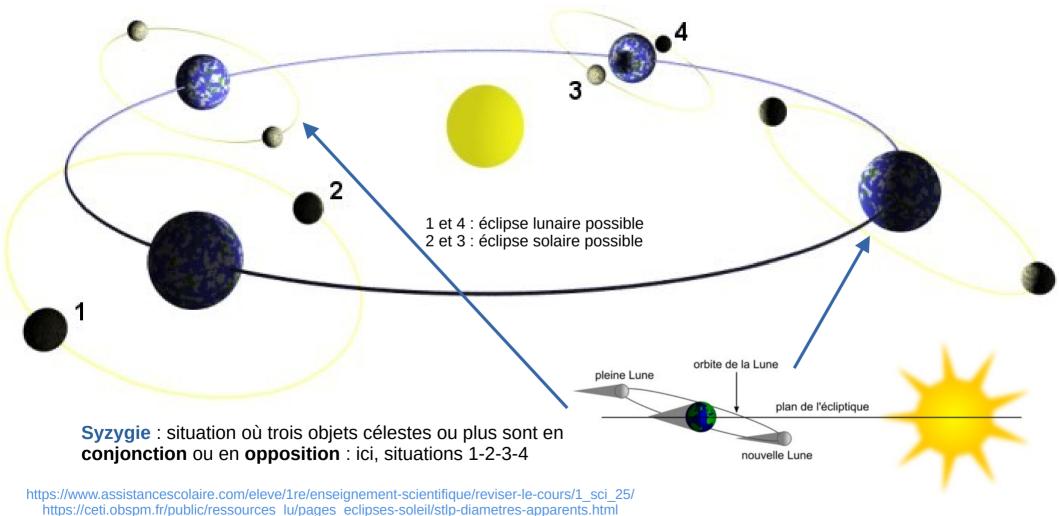
'→ Nord / Sud

3. <u>Libration parallactique</u>: changement de position d'un observateur sur Terre par rapport à la Lune → y.c. libration diurne due à la rotation de la Terre

On peut ainsi voir 59 % de la surface lunaire (mais 50 % à un instant donné!)


La libration (2)

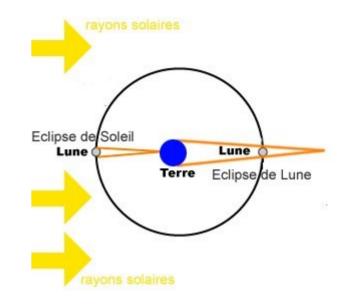
- Carte de la face visible de la Lune par Johannes Hevelius (1647)
- On y voit les librations de la Lune → plus de 50 % de la surface lunaire visibles depuis la Terre

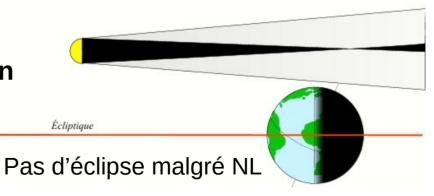


Vidéo: fr.wikipedia.org/wiki/Libration

Terre, Lune, Soleil et éclipses (1)

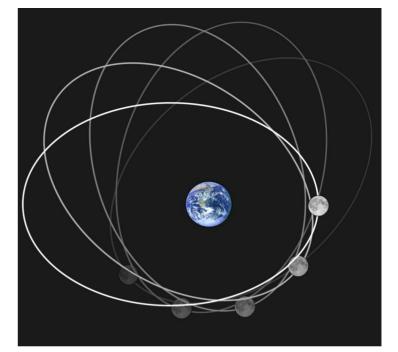
Terre, Lune, Soleil et éclipses (2)


Les éclipses (1)


Éclipses :

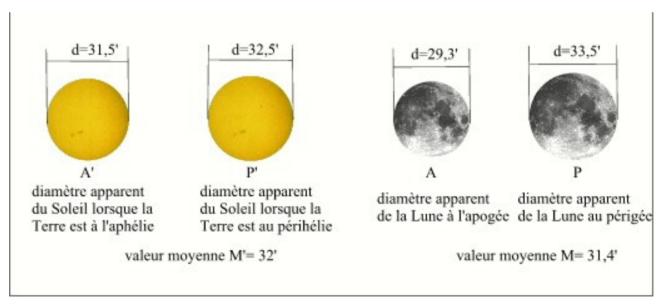
- Solaires : Lune passe entre Terre et Soleil
- **Lunaires**: Terre passe entre Soleil et Lune
- Totales ou partielles

Deux conditions :

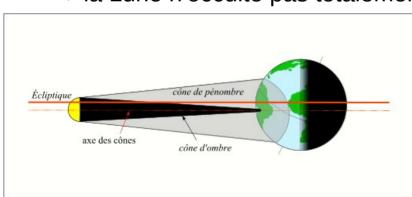

- Alignement Soleil-Terre-Lune
 pleine lune ou nouvelle lune
- Lune à proximité d'un des deux points d'intersection de son orbite avec le plan de l'écliptique (orbite de la Terre) : « nœuds lunaires ascendant et descendant »

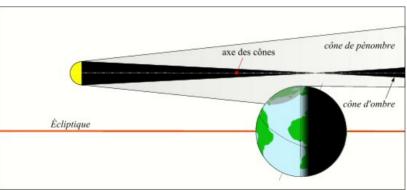
Les éclipses (2)

- Conjonction de 2 configurations :
 PL ou NL (mois synodique =
 29,53 j) et passage de la Lune par
 le plan de l'écliptique (mois
 draconitique = 27,21 j)
 → configuration propice aux
 éclipses tous les 5-6 mois
- La nature de l'éclipse dépend de la distance entre la Terre et la Lune = mois anomalistique (27,55 j), à cause de la précession du périgée

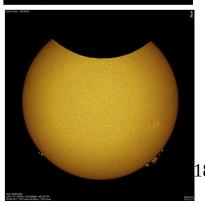

Saros: intervalle de 223 mois synodiques ou lunaisons (≈ 18 ans) au bout duquel le Soleil, la Terre et la Lune retrouvent approximativement la même configuration relative → ~ période de répétition d'éclipses quasi identiques

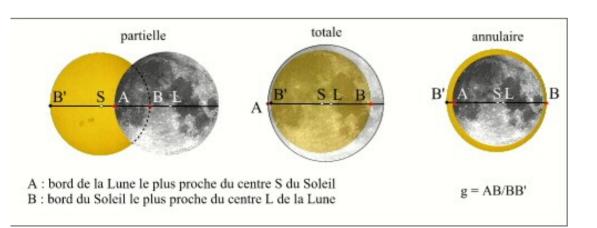
Calendrier des éclipses de Lune et de Soleil de 1990 à 2012

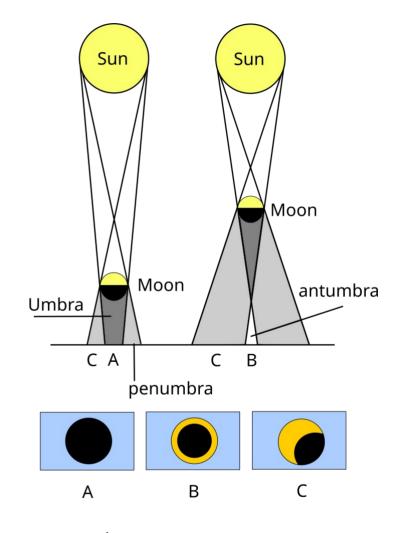

Éclipse solaire


- Taille apparente de la Lune ≈ celle du Soleil ≈ 0,5°
 - Diamètre du Soleil ≈ 400 fois celui de la Lune et distance ≈ 400 fois plus grande
 - → la Lune couvre presque exactement le Soleil → possibilité d'éclipses solaires totales = occultations du Soleil par la Lune
- Ce recouvrement total disparaîtra peu à peu car éloignement de la Lune (~ 3,8 cm / an)

Types d'éclipses solaires


- 1. Totale : Soleil complètement occulté par la Lune
- 2. Annulaire : Soleil, Terre et Lune parfaitement alignés mais taille apparente de la Lune < Soleil → anneau très brillant autour du disque lunaire
- 3. Hybride ou mixte (cas intermédiaire): totale ou annulaire selon l'endroit d'observation sur Terre (distance à la Lune) Éclipse « perlée » : présence d'une couronne de perles (grains de Baily, dus à la présence de montagnes, cratères, vallées sur la surface de la Lune) lorsque les diamètres apparents de la Lune et du Soleil sont très voisins
- **4. Partielle (non centrale)** : Soleil, Terre et Lune pas parfaitement alignés → la Lune n'occulte pas totalement le Soleil





Magnitude

- La magnitude (ou grandeur) d'une éclipse ou d'un transit astronomique est la proportion du diamètre du corps occulté : g = AB/BB'
 - AB = portion du diamètre du Soleil occulté
 - BB' = diamètre du Soleil
- Différents cas :
 - Partielles & annulaires : g < 1
 - Totales : g ≥ 1
 - Mixtes: g ≈ 1

A Éclipse totale dans l'ombre.

B Éclipse annulaire dans l'anté-ombre.

C Éclipse partielle dans la pénombre.

Éclipse totale

● 32°32'31.4"N 44°25'15.1"E

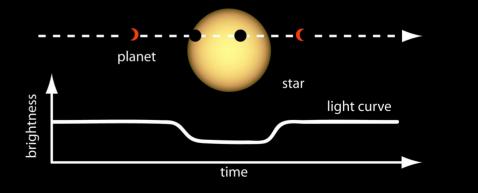
Durée de la phase totale = 00:01:07.5 Durée de l'éclipse = 02:39:19.0 Grandeur = 1.07424 Obscuration = 100 % Si tailles apparentes parfaitement égales, éclipse totale en un seul point à un instant donné → ligne avec le temps

Circonstances locales

Phase	Date (UT1)	р	Z	не
P1	-0009-06-28T09:49:33	271.66*	223.57*	76.05*
01	-0009-06-28T11:12:41	170.38*	104.61*	59.72*
M	-0009-06-28T11:13:16	1.82°	296.00*	59.60"
04	-0009-06-28T11:13:49	193.07°	127.22°	59.48°
P4	-0009-06-28T12:28:52	91.26°	24.24	43.71°

Déplacement de la Lune

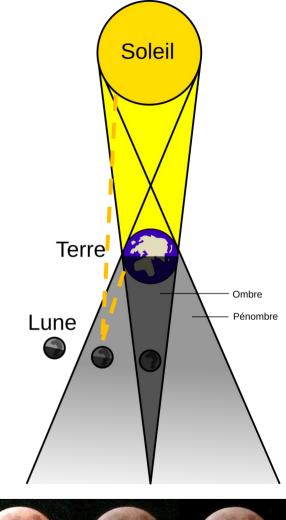
imcce.fr/lettre-information/archives/180


CIRCONSTANCES GÉNÉRALES

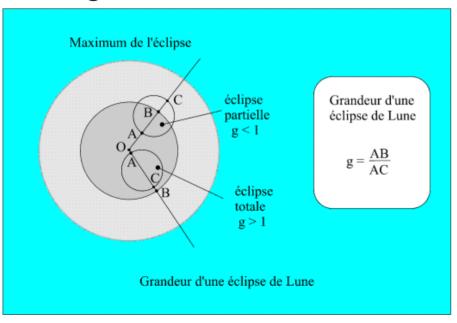
D'où cette photo est-elle prise?

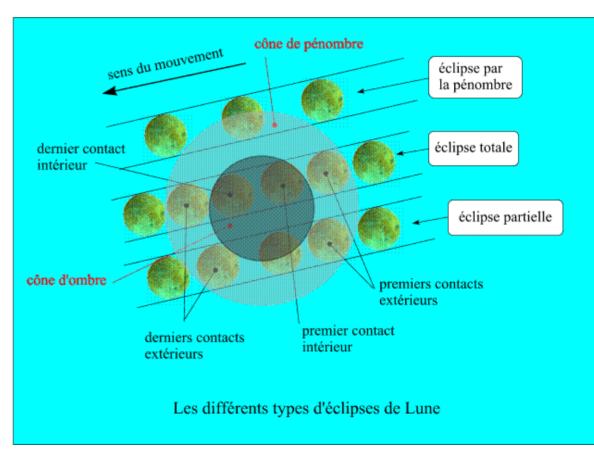
Transit de la Lune devant le Soleil

 C'est comme cela qu'on détecte les exoplanètes : variation périodique de la luminosité de l'étoile


Et celles-ci?

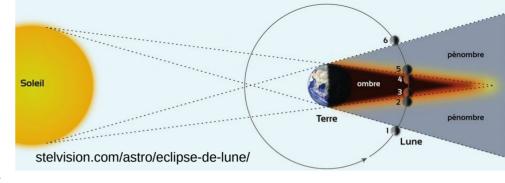
- Le satellite DSCOVR capture le passage de la Lune devant la Terre et l'ombre d'une éclipse totale
 - Deep Space Climate
 Observatory, à 1,5 M de km
 - Commandé par Al Gore (VP des EU) à la NASA en 1998
 - Lancé en 2015
 - Données sur les vents solaires ~ 1h avant qu'ils n'arrivent sur la Terre
 - Météorologie spatiale
- Face cachée mais pas sombre


Éclipse lunaire


- = Projection de l'ombre de la Terre sur la Lune
- Deux conditions :
 - 1. Lune pleine = alignement Soleil-Terre-Lune
 - 2. Lune à proximité d'un des deux points d'intersection de son orbite avec le plan de l'écliptique (orbite de la Terre) :
 - « nœuds lunaires ascendant et descendant »
- Depuis la Lune, le diamètre apparent de la Terre est supérieur à celui du Soleil : la Terre peut complètement masquer le Soleil à la Lune
- Deux zones : ombre et pénombre

Types d'éclipses lunaires

- Selon que la Lune passe, partiellement ou pas, par les cônes d'ombre ou de pénombre
- On définit la « grandeur » / magnitude



La Lune de sang

- Ou Lune rouge / cuivrée
- Lors d'une éclipse totale, la Lune, plutôt jaune-blanche, peut apparaître rouge
- Majorité de la lumière bloquée par la Terre mais de la lumière peut être réfractée par l'atmosphère = déviée vers la Lune
- La lumière qui traverse l'atmosphère subit de la **diffusion** (de Rayleigh), qui touche particulièrement la lumière bleue : **il ne reste que du rouge** (même mécanisme que le coucher de soleil)
 - Également lorsque la Lune est basse sur l'horizon
 - Différent de la « Lune rousse »

- L'**échelle de Danjon** (« L ») évalue l'apparence et la luminosité de la Lune durant une éclipse, qui dépend de :
 - **Trajectoire** à travers l'ombre de la Terre
 - Conditions atmosphériques terrestres (présence de particules dans l'air, éruptions volcaniques) \to L = 0 en 1992

0	Lune presque invisible		
1	Lune sombre et de couleur grise / brunâtre		
2	Lune rouge sombre ou de couleur rouille		
3	Lune rouge brique		
4	Lune de couleur cuivre ou orange très brillant		