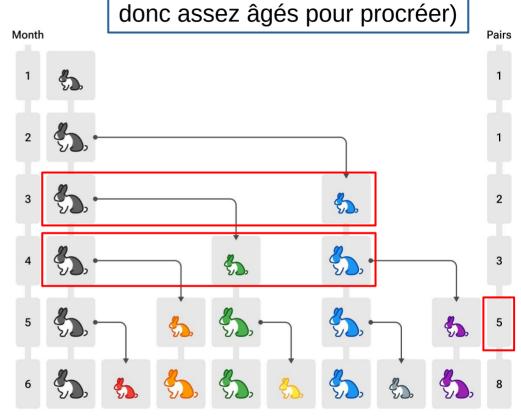
Suite de Fibonacci et nombre d'or (1)

Pour une meilleure compréhension, certaines explications pourront être légèrement simplifiées/tronquées Images : Wikipedia sauf mention contraire

Origine

- « Problème de Fibonacci » (1202) sur l'évolution d'une population de lapins. On suppose que :
 - Au début du premier mois, il n'y a qu'un (jeune) couple de lapereaux
 - Les lapins ne peuvent procréer qu'à partir de l'âge d'un mois
 - À partir de cet âge, ils engendrent tous les mois un autre couple de lapereaux
 - Les lapins ne meurent jamais
- Quelle est l'évolution de la population de lapins ?
 - Nb lapins (n) = nb lapins (n-1) « existants » + nb lapins (n-2) « adultes » 2



5 = 3 couples **présents** + 2 couples **déjà là avant** (et

Définition

Un terme est la somme des 2 précédents

Pour
$$n>0$$
, $F_{n+2}=F_{n+1}+F_n$ avec $F_0=0$ et $F_1=1$

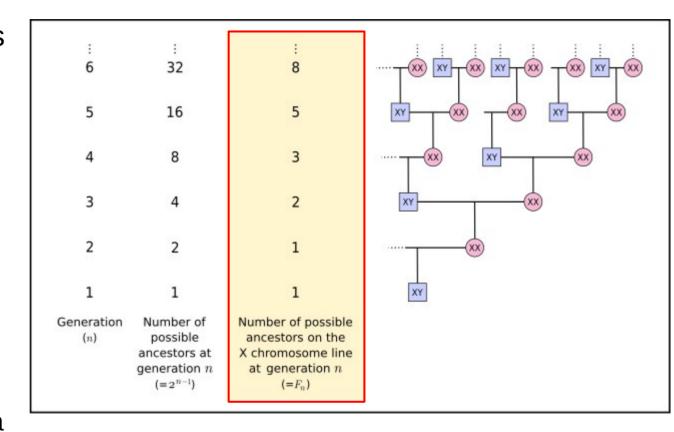
Ou:
$$F_0 = 0$$
 et $F_1 = 1$ et, pour $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

→ 20 premiers termes :

F_0	F_1	F_2	F_3	F_4	F_5	$oldsymbol{F_6}$	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}	F_{16}	F ₁₇	F_{18}	F ₁₉
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181

Le chromosome X

- Le nombre de personnes ayant pu transmettre le chromosome X à un homme suit une loi de Fibonacci à mesure que l'on remonte les générations :
 - X reçu de la mère : 1
 - Mère : X reçu de son père (GP-M) ou sa mère (GM-M) = 2
 - GM-M: X reçu de son père (AGP-MM) ou sa mère (AGM-MM): 2 ou GP-M: X reçu de sa mère (AGM-MP) = 3



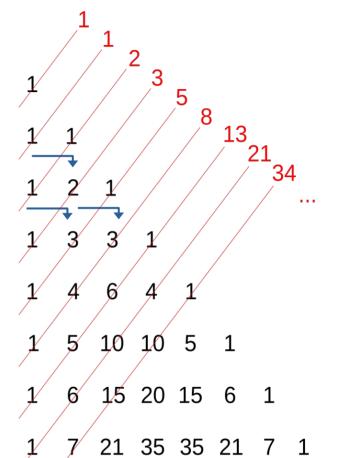
4

Le triangle de Pascal

Triangle de Pascal = facteurs du développement de (a+b)ⁿ = « formule du binôme de Newton »

$$(a+b)^{n} = \sum_{k=0}^{n} C_{n}^{k} a^{n-k} b^{k} \qquad C_{n}^{k} = \frac{n!}{(n-k)! \, k!} = \binom{n}{k}$$

 $(1+x)^5 = 1+5x+10x^2+10x^3+5x^4+1x^5$

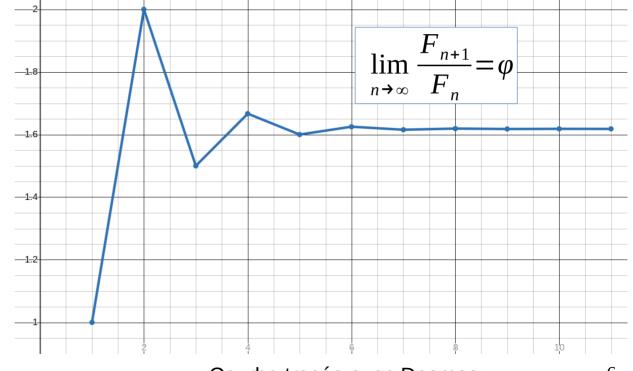


8 28 56 70 56 28 8 1

• Le ratio $\frac{F_{n+1}}{F_n}$ tend très rapidement vers une valeur $\approx 1,618$

n	F _{n+1}	Fn	F _{n+1} /F _n
0	1	0	-
1	1	1	1
2	2	1	2
3	3	2	1,5
4	5	3	1,666
5	8	5	1,6
6	13	8	1,625
7	21	13	1,615
8	34	21	1,619
9	55	34	1,618
10	89	55	1,618

Ratio des termes de la suite de Fibonacci



Courbe tracée avec Desmos : https://www.desmos.com/calculator?lang=fr

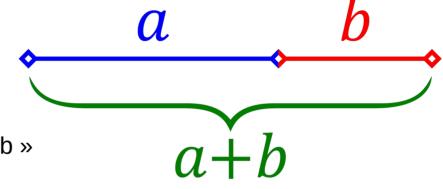
Le nombre d'or

• Ou « divine proportion » = nombre φ tel que

$$\frac{a+b}{a} = \frac{a}{b} = \varphi$$
 « a+b est à a ce que a est à b »

$$\varphi^2 - \varphi - 1 = 0$$

• Racines: $\varphi = \frac{1+\sqrt{5}}{2} = \sqrt{\frac{5+\sqrt{5}}{5-\sqrt{5}}} \approx 1,618$ $\varphi' = \frac{1-\sqrt{5}}{2} = -\frac{1}{\varphi} \approx -0,618$



Euclide parle de partage en « extrême et moyenne raisons »

$$\varphi' = \frac{1 - \sqrt{5}}{2} = -\frac{1}{\varphi} \approx -0,618$$

Propriétés du nombre d'or

- Rappel : racine positive de l'équation $\varphi^2 \varphi 1 = 0$
- Inverse: $\frac{1}{\varphi} = \varphi 1$ (quand a/b= φ , b/a = φ -1)
- Racine continue :

$$\varphi^2 = 1 + \varphi \text{ donc } \varphi = \sqrt{1 + \varphi} = \sqrt{1 + \sqrt{1 + \varphi}} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}$$

• Fraction continue :

$$\varphi = 1 + \frac{1}{1 + \frac{$$

$$\varphi^{2} = 1 \varphi + 1$$
 $\varphi^{3} = 2 \varphi + 1$
 $\varphi^{4} = 3 \varphi + 2$
 $\varphi^{5} = 5 \varphi + 3$
 $\varphi^{6} = 8 \varphi + 5$
 $\varphi^{7} = 13 \varphi + 8$
 $\varphi^{8} = 21 \varphi + 13$

$$1 + \frac{1}{\dots}$$

$$\varphi^n = F_n \varphi + F_{n-1}$$

$$\pi = 4 \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} (\varphi^{-2k-1} + \varphi^{-6k-3}) = 4 \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} ((\varphi-1)^{2k+1} + (2\varphi-3)^{2k+1})$$

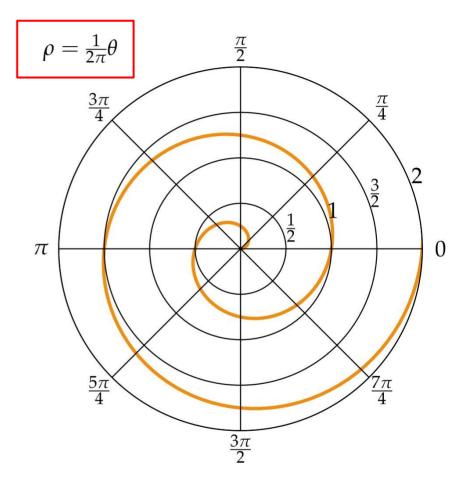
Expression fonctionnelle de F_n

- La forme fonctionnelle d'une suite (u_n) permet de calculer un terme u_n directement sans avoir à calculer tous les précédents (avec la relation de récurrence)
- Ex (suite « arithmétique ») : $u_{n+1} = u_n + 2$ avec $u_0 = 1$
 - On peut calculer les termes successifs: 1, 3, 5, 7, 9, ...
 - Ou on peut remarquer que $u_n = 1 + 2.n$ (= nombres impairs)
- Formule de Binet :

$$F_n = \frac{1}{\sqrt{5}} \left(\varphi^n - \varphi^{n} \right)$$

$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1,618$$
 $\varphi' = \frac{1-\sqrt{5}}{2} = -\frac{1}{\varphi} = 1-\varphi \approx -0,618$

PROPRIÉTÉS GÉOMÉTRIQUES

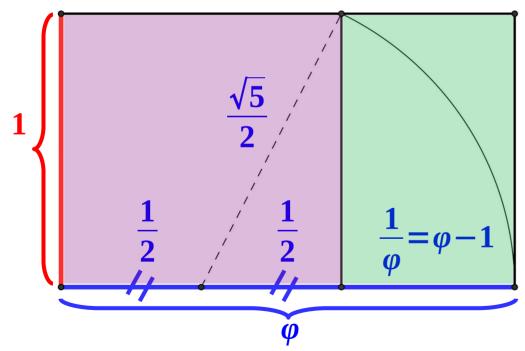


Spirale d'Archimède

Rappel : 1 tour = 360° = 2π radians

a b a+b a+b

$$\frac{a+b}{a} = \frac{a}{b} = q$$

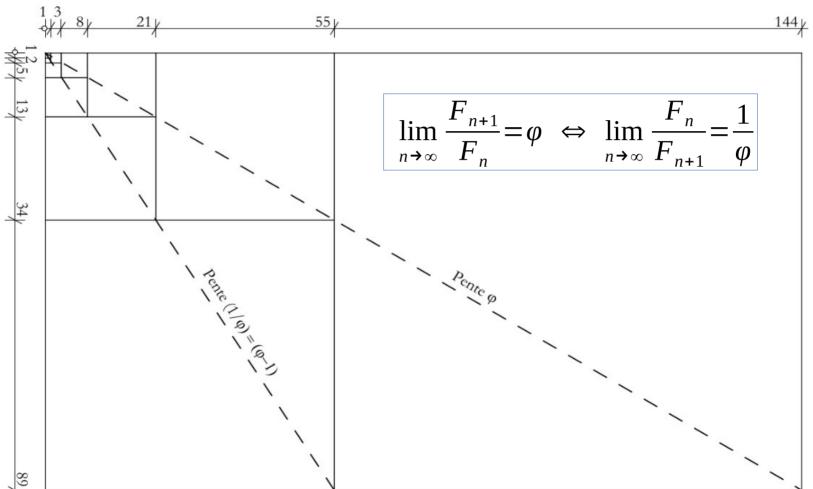


Rectangle d'or

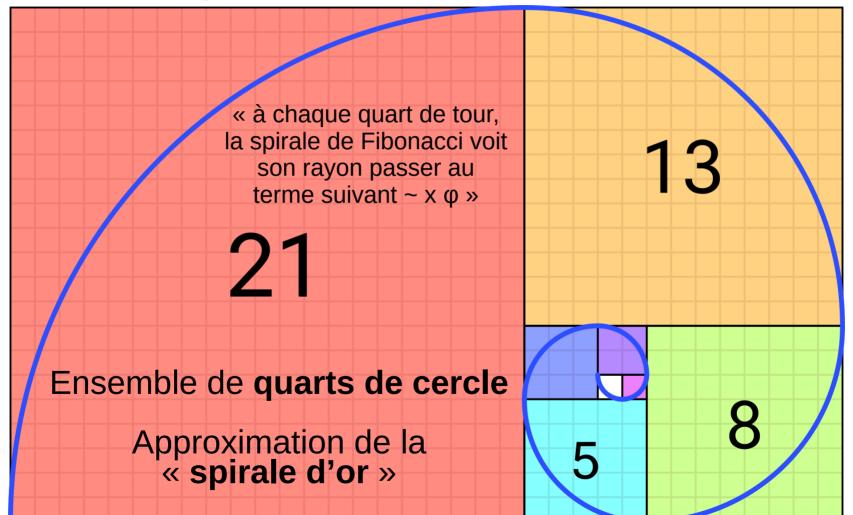
- Si on ajoute un carré
 à un rectangle d'or, on
 obtient un rectangle
 d'or φ fois plus grand
- Si on enlève un carré à un rectangle d'or, on obtient un rectangle d'or φ fois plus petit

Propriété géométrique Juxtaposition de carrés dont les côtés ont pour longueur F₁, F₂, ... F_n: à chaque étape : la taille du rectangle est multipliée par $F_{n+1}/F_n \sim \varphi$ 12 et la figure fait 1/4 de tour (90°= π / 2)

Propriété géométrique



Spirale de Fibonacci



La spirale d'or

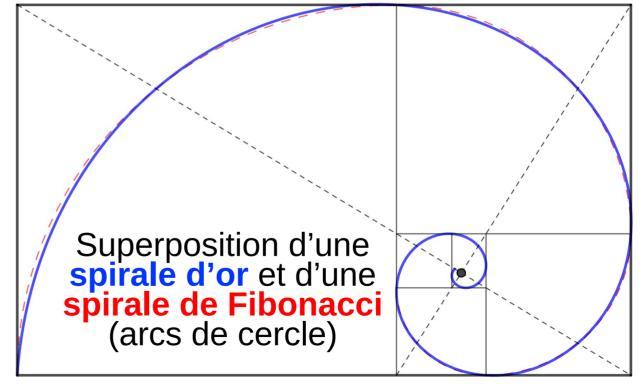
• C'est une spirale logarithmique de facteur de croissance ϕ : à chaque quart de tour (π /2), son rayon est multiplié par ϕ

$$r(\theta) = \varphi^{\frac{\theta}{\pi/2}}$$

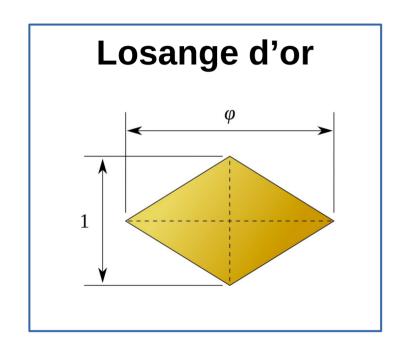
$$\Rightarrow \frac{r(\theta + \pi/2)}{r(\theta)} = \varphi$$

 \rightarrow pour un tour, $\phi.\phi.\phi.\phi=\phi^4$

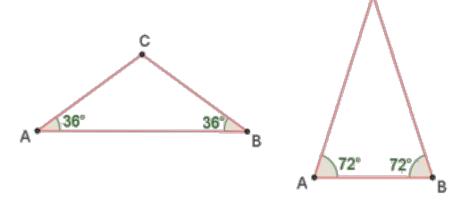
$$\frac{r(\theta+2\pi)}{r(\theta)} = \varphi^4$$



Losange et triangle(s) d'or



Losange : 4 côtés de même longueur

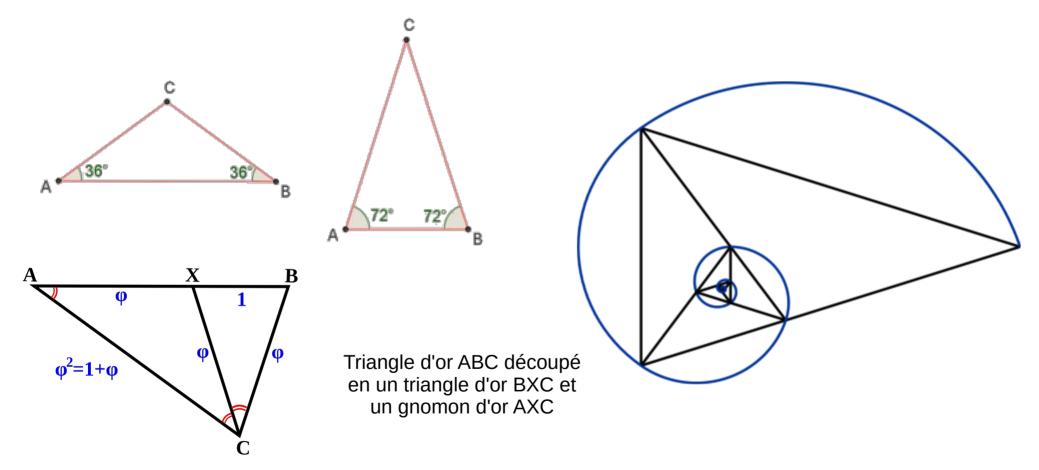


Triangle d'or : triangle **isocèle** dont le rapport des côtés vaut φ :

[1; ϕ ; ϕ] (aigu): angles = 36°, 72°, 72° [1; 1; ϕ] (obtus): angles = 108°, 36°, 36°

Définitions de cet article	Définitions alternatives	$\frac{a}{b}$	Angle au sommet	Angles égaux de base
Triangle d'or Triangle sublime	Triangle d'or aigu	φ	36°	72°
Gnomon d'or Triangle d'argent	Triangle d'or obtus « divin »	$\frac{1}{\varphi}$	108°	36°

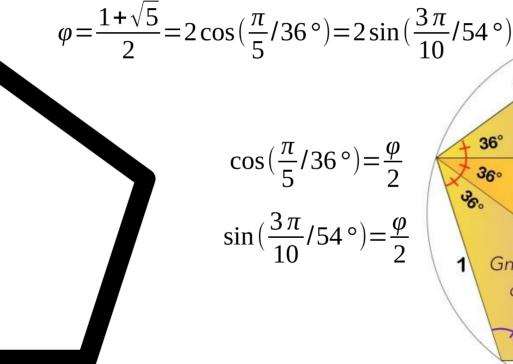
Triangle d'or : division et spirale d'or



Pentagone

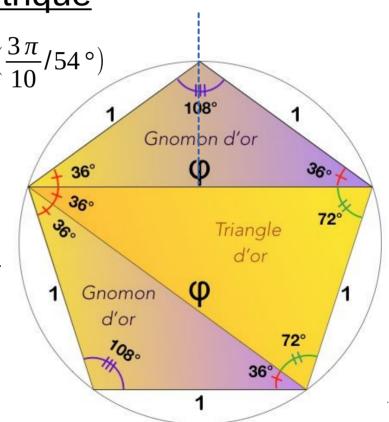
 ϕ est au pentagone ce que π est au cercle

Propriété trigonométrique



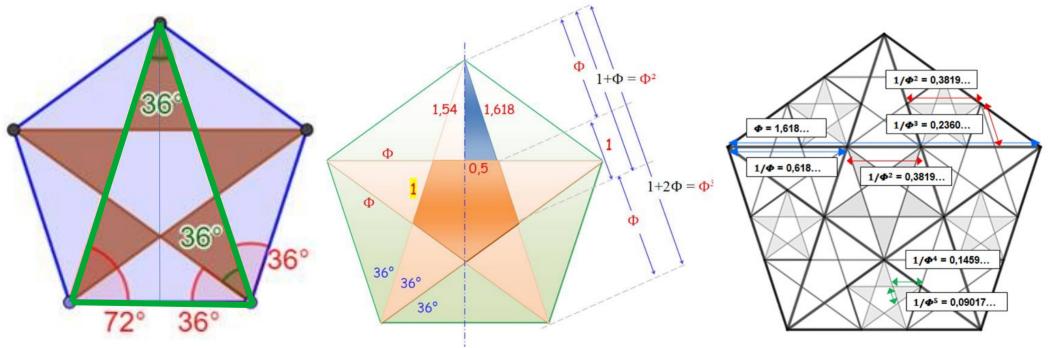
$$\cos(\frac{\pi}{5}/36^{\circ}) = \frac{\varphi}{2}$$

$$\sin\left(\frac{3\pi}{10}/54^{\circ}\right) = \frac{\varphi}{2}$$



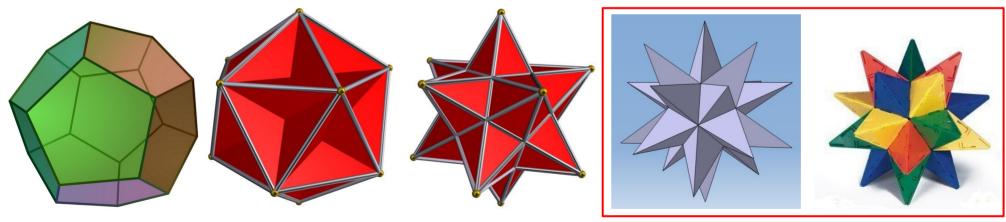
Nombre d'or et pentagramme

φ est également fondamental pour le **pentagramme** : tous les sommets d'un pentagramme régulier sont des triangles d'or



Nombre d'or et dodécaèdre

- **Dodécaèdre** = polyèdre à 12 faces
 - Dodécaèdre régulier
 - Grand dodécaèdre: les faces sont des pentagones réguliers, chaque face en coupe 5 selon un pentagone régulier
 - **Petit dodécaèdre étoilé** : 12 faces pentagrammiques (60 triangles d'or) connectées par les sommets
 - Grand dodécaèdre étoilé : 12 faces pentagrammiques (60 triangles d'or), trois pentagrammes connectés à chaque sommet
- Les coordonnées des sommets font appel à φ



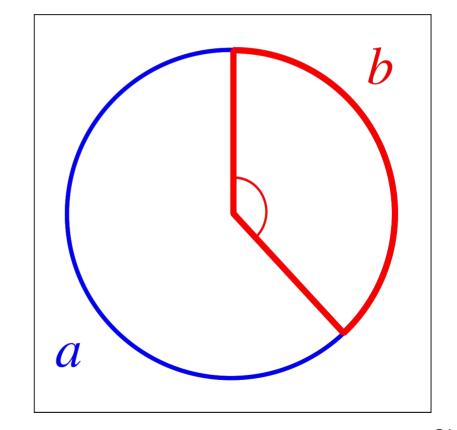
φ intervient aussi dans la position des sommets de l'icosaèdre (20 côtés) et du grand icosaèdre

L'angle d'or

• C'est le plus petit des deux angles complémentaires (somme = $2\pi = 360^{\circ}$) dont le rapport vaut $\Phi \rightarrow b$

$$\begin{cases} a + b = 2\pi \\ a / b = \varphi \end{cases}$$

• II vaut \approx 2,4 rad \approx 137,5 °



Les nombres de Lucas

même limite :
$$\lim_{n \to \infty} \frac{L_{n+1}}{L_n} = \varphi$$

Pour
$$n>0$$
, $L_{n+2}=L_{n+1}+L_n$ avec $L_0=2$ et $L_1=1$

Un terme est la somme des 2 précédents (mais avec des termes initiaux différents)

→ 20 premiers termes :

F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}	F_{16}	F ₁₇	F_{18}	F_{19}
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181
L_{o}	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9	L_{10}	L_{11}	L_{12}	L_{13}	L_{14}	L_{15}	L_{16}	L_{17}	L_{18}	L_{19}
2	1	3	4	7	11	18	29	47	76	123	199	322	521	843	1364	2207	3571	5778	9349