La matière et le froid (2)

- Phases et transitions de phases
- Électricité, magnétisme et supraconductivité

Julien Ramonet, mars 2025

Pour une meilleure compréhension, certaines explications pourront être légèrement simplifiées/tronquées Images : Wikipedia sauf mention contraire

Notions utilisées :

- 1. Introduction
- 2-3. Structure de la matière
- 31. Matière et rayonnement théorie
- 45. La matière et le froid (1)

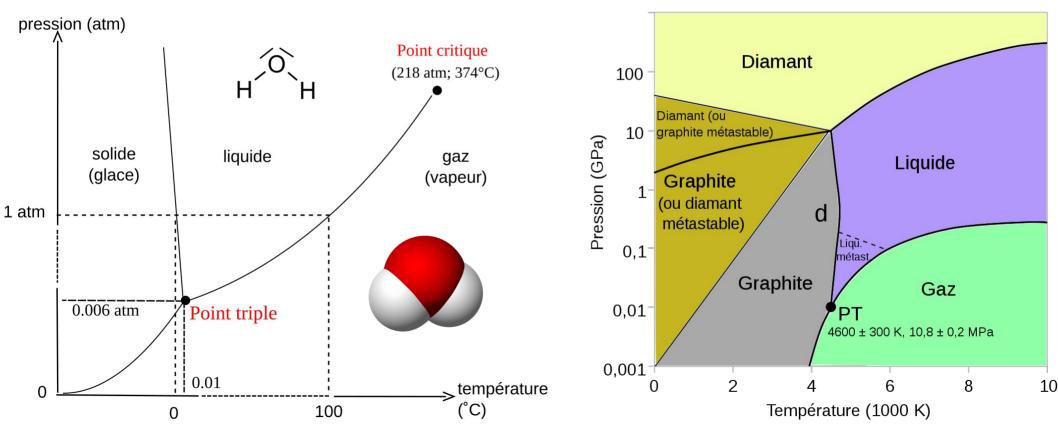
Enthalpie

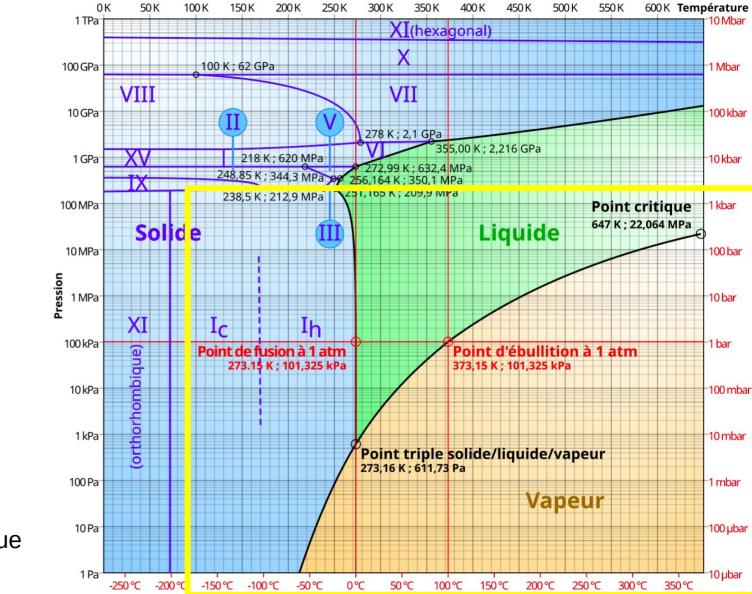
= changement de phase d'un système physique en raison d'une variation de température, de pression, d'excitation magnétique, ... = changement des propriétés du système

Exemples:

- Changements d'état
- Changement des propriétés magnétiques
- Supraconductivité, superfluidité
- Condensation de Bose-Einstein

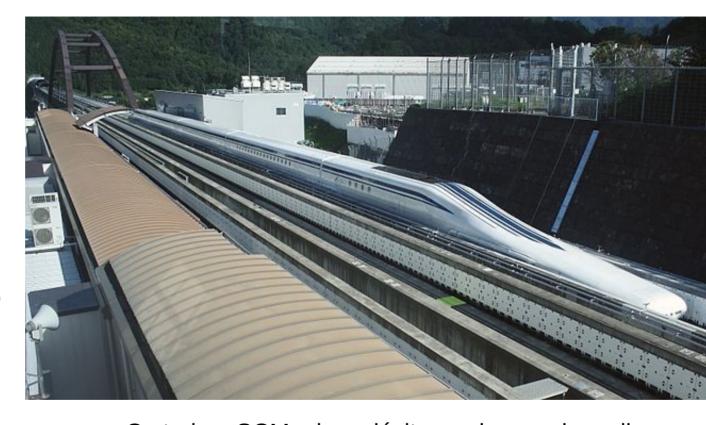
Étude mécanique et physique de froissement et dé-froissement des textiles cellulosiques à base de coton et lin


Lina Ben Hassine


Plasma Gaz Liquide Solide Solidification

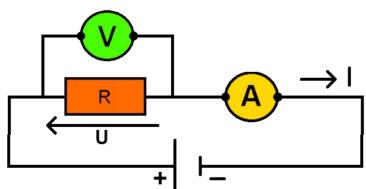
Transition de phase

Les diagrammes de phase


Diagramme indiquant les différentes phase d'un corps physique, en général dans un diagramme (p, T)

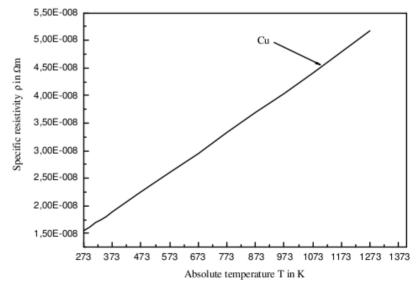
Note : échelle logarithmique de pression

La supraconductivité

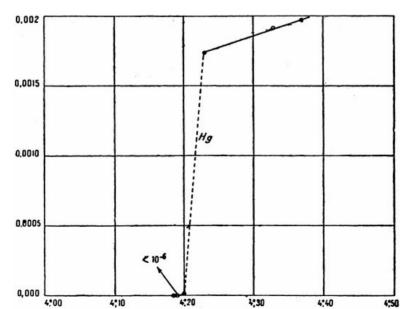

Ce train « SCMaglev » lévite au-dessus des rails grâce à des bobines supraconductrices. Depuis 2015, il détient le record de vitesse avec 603 km/h (TGV : 575 km/h en 2007)

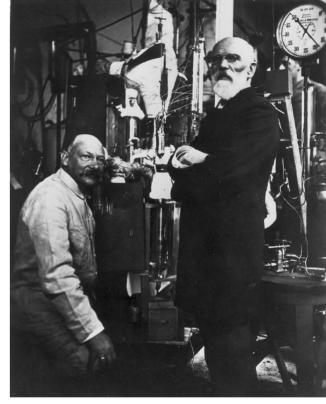
Le courant électrique

- Lorsqu'on soumet des électrons mobiles à une différence de potentiel électrique U, ils se déplacent
 - = un **courant électrique** d'intensité I = U/R (« loi d'Ohm »), où R est la **résistance électrique** du *c*ircuit
- La résistance est due aux chocs des électrons lors de leur parcours


 → échauffement = effet Joule

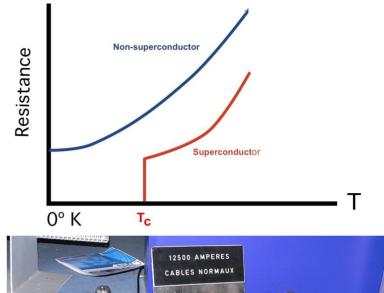
 - La résistance dépend du **matériau** et de sa forme
 - La résistivité p ne dépend que du matériau


https://science.mainguet.org/electron/supra/supraconductivite.htm


- Plus p est grande, plus le courant a « du mal à passer »
 - Selon la valeur de ρ, on parle de **conducteur**, de **semi-conducteur** ou d'**isolant**
 - Les **métaux** sont les meilleurs conducteurs : Ag > Cu > Au > Al, ...
- La résistivité diminue avec la température (ce qui est logique car l'agitation thermique égalèment)
 - La vitesse de déplacement des électrons est de l'ordre de **quelques mm/s**
 - (Mais l'information se propage à c)

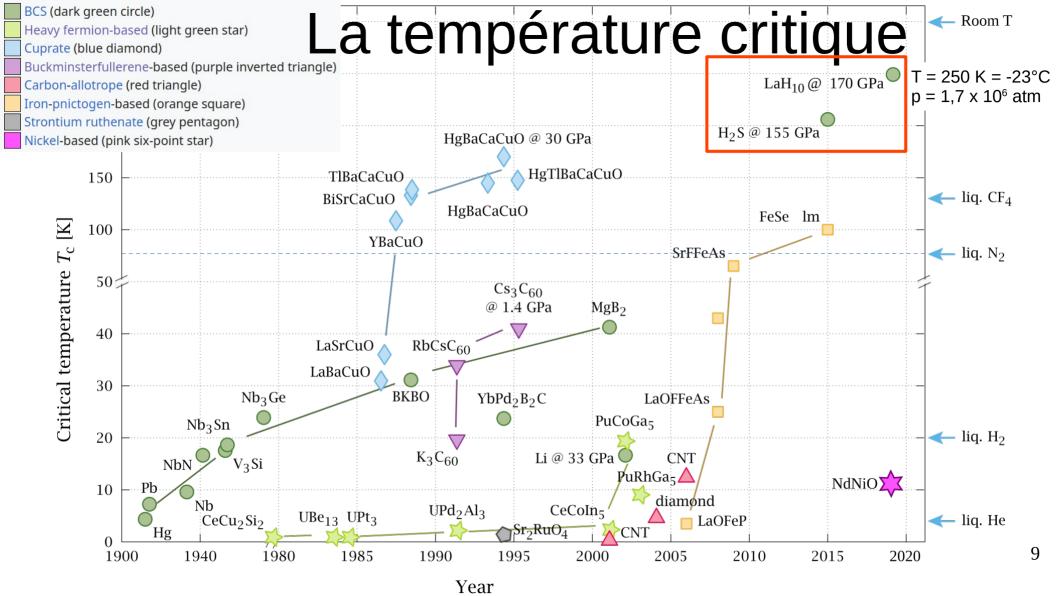
Résistivité à très basse Tp

- Après avoir réussi à liquéfier de l'hélium, Kamerlingh Onnes a étudié les propriétés de la matière à très basse température
- Il découvre en 1911 que la résistivité électrique du mercure **devient nulle à 4,2 K!**



Kamerlingh Onnes et van der Waals, 1911

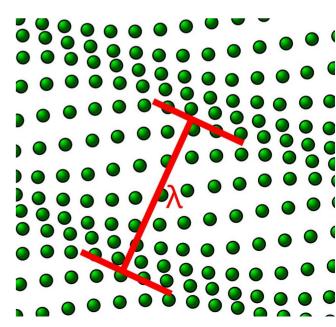
Prix Nobel de Physique 1913 pour « ses études des propriétés de la matière à basse température, ce qui a mené, entre autres, à la production de l'hélium liquide »

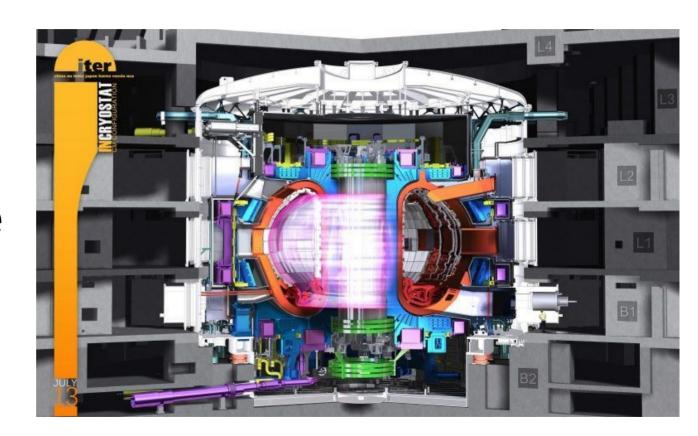

La supraconductivité

- Disparition de la résistance électrique d'un matériau, qui devient « supraconducteur »
- Cet effet se produit en-dessous d'une température « critique » propre au matériau
 - Mais tous les matériaux ne possèdent pas cette propriété → résistivité non nulle à 0 K
 - Si R=0, un courant tourne indéfiniment dans un circuit supraconducteur : plus d'effet Joule et de dissipation
- Transition supraconductrice = véritable transition de phase
- Recherche très active pour des « supraconducteurs à haute température critique » (découverte en 1986)
 - 4 prix Nobel directement liés : 1972, 1973, 1987, 2003 (+ 1913)

Câbles d'alimentation des expériences du CERN : en haut, les câbles du LEP ; en bas, les câbles du LHC, supraconducteurs

Éléments théoriques (1)

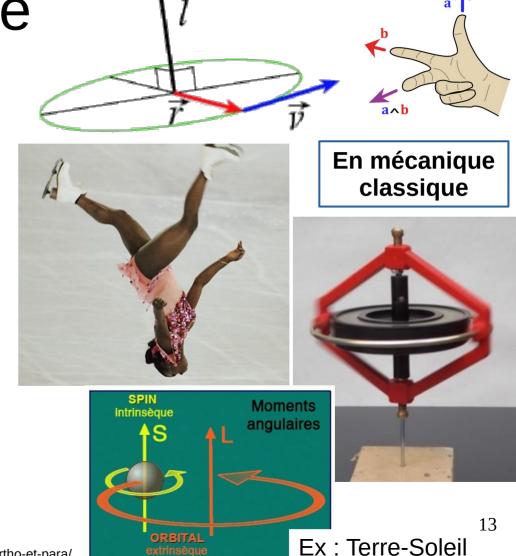

- **Théorie BCS** 1957 (Bardeen, Cooper, Schrieffer) → PNP 1972
 - Bardeen PNP 1956 (semi-conducteurs)!
- Découverte en 1911 → ~ 50 ans d'attente!
- Lorsqu'un électron (-) passe dans un réseau métallique d'ions (+), il attire ces ions qui vibrent et, en raison de leur grande masse, mettent du temps à retrouver leur position d'équilibre
- Il y a donc un excès de charges + sur le trajet de l'électron, qui va attirer un 2^{ème} électron (de spin opposé) → à basse température, force attractive entre les 2 électrons (malgré la force répulsive de Coulomb)
- Les électrons se regroupent en « paires de Cooper » (configuration plus favorable en termes d'énergie)


The two electrons, called Cooper Pairs, become locked together and will travel through the lattice.

Éléments théoriques (2)

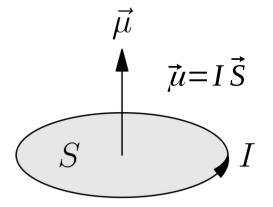
- Les électrons se regroupent en « paires de Cooper » :
 2 fermions → 1 boson
- Ces paires adoptent un comportement collectif (« condensat »).
 Conséquence : séparer une paire d'électrons demande autant d'énergie que séparer toutes les paires
- → les vibrations du réseau n'affectent plus les paires d'électrons dans leur ensemble, ni donc individuellement
- → les électrons se déplacement **collectivement** sans résistance
- On peut décrire cette interaction comme un échange de « phonons » (= quasi-particules décrivant l'excitation quantique des vibrations du réseau cristallin dans un solide)

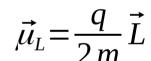
Le magnétisme



Le moment cinétique

 Moment cinétique (« angulaire ») <u>extrinsèque</u> :


$$\vec{L} = \overrightarrow{OM} \wedge \vec{p} = \vec{r} \wedge m\vec{v}$$


- Moment angulaire <u>intrinsèque</u> dû à la rotation de l'objet sur lui-même
- Théorème : quantité conservée pour un système isolé → gyroscope, patinage artistique

Le moment magnétique

- Grandeur vectorielle caractérisant l'intensité d'une source magnétique, notée M ou µ (boucle de courant électrique = déplacement d'une particule chargée ou objet aimanté)
- <u>Manifestation</u>: tendance à s'aligner avec le champ magnétique (ex : aiguille d'une boussole)
- Tout système possédant un moment magnétique produit un champ magnétique
- Le moment magnétique orbital μ_L d'une particule de charge q et de masse m est lié au moment cinétique orbital L :
 - Il s'agit ici du moment cinétique orbital « extrinsèque », dû au mouvement de la particule chargée
- En 1922, les physiciens Stern et Gerlach ont mis en évidence l'existence d'un moment magnétique « intrinsèque », dit de « spin » : un électron est ~ un petit aimant

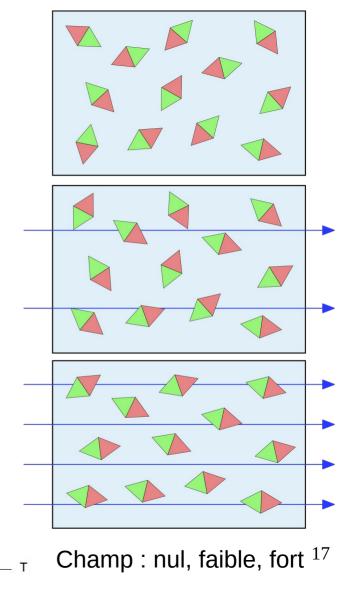
Le magnétisme

- **Aimantation** d'un matériau = somme des moments magnétiques divisée par le volume $\vec{M} = \frac{1}{V} \sum_{i} \vec{\mu}_{i}$

- **Champ magnétique**:
 - B : champ total à l'intérieur du matériau
 - H: excitation magnétique (champ mag. extérieur)
 - M : aimantation = **réaction du matériau** à H
 - B est la grandeur apparaissant dans les équations de Maxwell

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

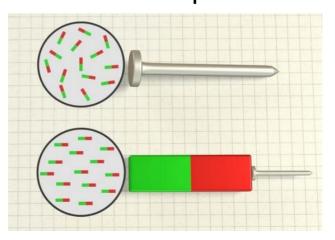
- **Susceptibilité magnétique** (χ) : capacité d'un matériau à s'aimanter quand il est soumis à une excitation magnétique H
 - = 0 : vide
 - $\sim -10^{-5/6}$: diamagnétisme
 - $10^{-5} 10^{-3}$: paramagnétisme
 - > 10⁴ : **ferromagnétisme** (ex : aimants)


Le diamagnétisme

- Préfixe « dia » = « à travers » : dialogue, diachronie, ...
- Tous les matériaux sont diamagnétiques
 - Mais diamagnétisme parfois **masqué** par d'autres formes de magnétisme
- Apparition d'un faible champ magnétique opposé au champ magnétique extérieur : $\chi \sim -10^{-5/6}$
- L'eau est diamagnétique
 - Naturellement non magnétique
 - repoussée par un aimant, ce qui permet de faire léviter des animaux (et, théoriquement, des humains) dans un champ magnétique fort : 10-20 T
 - (rappel : champ mag. terrestre $\sim 50 \mu T$)
 - → prix Ig Nobel (« recherches qui font d'abord rire ... puis réfléchir) en 2000 à A. Geim, qui aura plus tard le PNP pour la découverte du graphène en 2010

Paramagnétisme

- Matériaux naturellement non magnétiques : les spins sont désordonnés et oscillent de manière aléatoire
- qui acquièrent une aimantation dans le sens du champ magnétique extérieur $\chi \sim 10^{-3/5}$
- Compétition avec l'agitation thermique qui désaligne les moments magnétiques
 - → loi de Curie

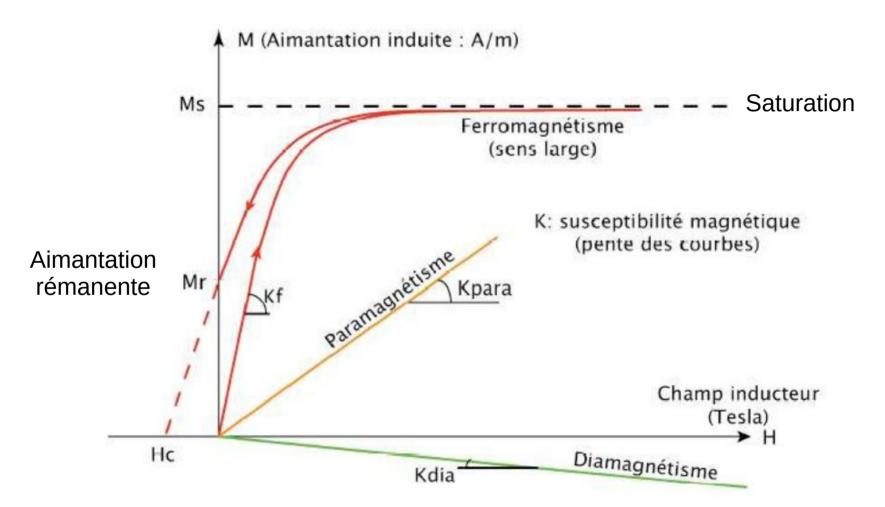

Ferromagnétisme

- Ferromagnétisme = mécanisme par lequel un matériau est
 - Attiré par un aimant
 - **Lui-même** un aimant
- Les spins interagissent fortement et s'alignent avec l'excitation magnétique

 = capacité à s'aimanter sous l'effet d'un champ magnétique extérieur et à éventuellement rester aimanté quand le

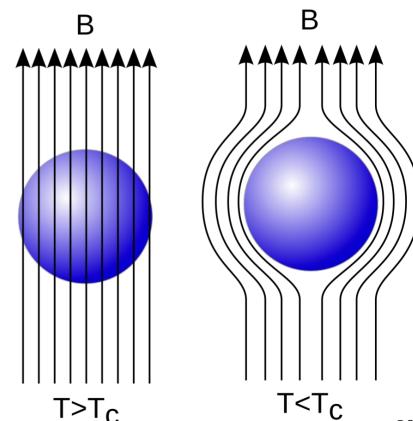
champ disparaît

→ aimants permanents



Ferrofluide = suspension colloïdale (taille entre 1 nm et 1 μm) de nanoparticules ferromagnétiques.

Ici : sur une plaque en verre audessus d'un aimant


Résumé

L'effet Meißner(-Ochsenfeld) (1933)

- Deuxième phénomène associé à la supraconductivité
 - = expulsion totale du champ magnétique
 - = diamagnétisme parfait : $\chi = -1$
- Des courants électriques apparaissant à la surface du supraconducteur et génèrent un champ magnétique qui s'oppose exactement à l'excitation magnétique extérieure :

B=0 à l'intérieur

La lévitation (quantique)

- Lorsque l'on place un aimant audessus d'un supraconducteur, le SC réagit en produisant un champ opposé à celui de l'aimant
 - → l'aimant lévite
- Marche aussi à l'envers : suspension
- Il existe une force de stabilisation qui fait que l'objet garde la même position (mémoire)

Pour plus de détails (et une démo !) : youtube.com/watch?v=6kg2yV_3B1Q

