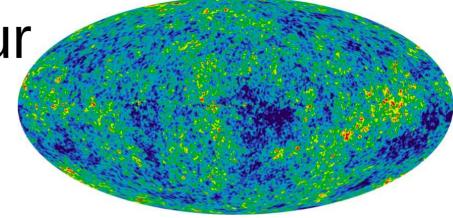
La matière et le froid (1)

- Température
- Thermodynamique
- Obtention de très basses températures

Julien Ramonet, mars 2025

Pour une meilleure compréhension, certaines explications pourront être légèrement simplifiées/tronquées Images : Wikipedia sauf mention contraire



Notions utilisées :

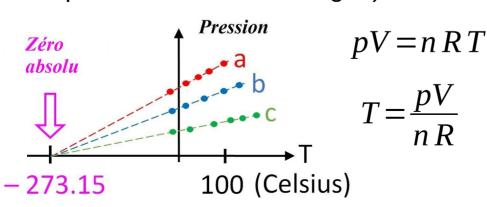
- 1. Introduction
- 2-3. Structure de la matière
- 15. Thermodynamique
- 16. Chaleur et énergie

Température et chaleur

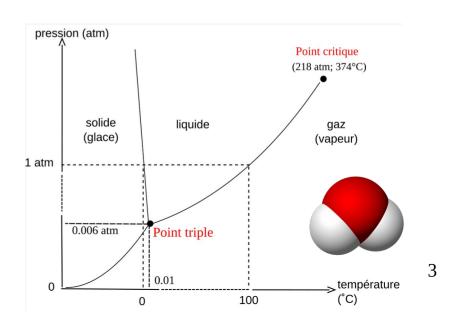
- Microscopiquement, les particules d'un corps ne sont jamais au repos : elles ont toujours une vitesse et donc une énergie cinétique
- La température est la grandeur physique qui mesure l'agitation thermique microscopique d'un corps (Ec ~ k_BT)
 - Une des 7 unités fondamentales (K)
- Ne peut être définie que pour des systèmes composés de nombreuses particules en interaction : un atome seul ou un gaz pas assez dense n'ont pas de température
- Lorsque l'on met en contact deux corps de température différente, il y a échange d'énergie cinétique microscopique entre les particules plus rapides et les moins rapides (par des collisions), c'est-à-dire de « chaleur »

Anisotropies de températures de l'Univers primordial (étendue ~10⁻⁴ K) Expérience WMAP

- Température de l'Univers ?
 - Température intersidérale
 - (Température SSI : -120 / +150°C)
- <u>Définition</u>: température que prendrait un objet en équilibre thermique
 - Rayonnement thermique émis = rayonnement reçu
 - → fond diffus cosmologique (CMB : cosmic microwave background)
 - 2,7 K


Température thermodynamique

- ~ « Température **absolue** »
- Liée à l'agitation (« thermique ») des particules


$$\bar{E}_c = \frac{3}{2} k_B T$$

$$v \approx 500 \, m. \, s^{-1}$$

- « Théorie cinétique des gaz »
- Également liée à la loi des gaz parfaits (Clapeyron, 1834) (mesure par un thermomètre à gaz)

- Son origine = « zéro absolu » = point d'énergie et d'entropie minimales, voire ~ nulles
 - À cette température, il n'y a ~ plus d'agitation thermique
 - (Reste le principe d'incertitude de Heisenberg)
- C'est la température la plus basse que l'on puisse atteindre → limite inatteignable (phénomènes quantiques)
 - Le 2ème point qui permet de la définir est le « point triple de l'eau » à 273,16 K = 0,01 °C

Grandeur	Symbole de la grandeur	Symbole de la dimension	Unité SI	Symbole associé à l'unité
Masse	m	М	kilogramme	kg
Temps	t	Т	seconde	S
Longueur	I, x, r	L	mètre	m
Température	T	Θ	kelvin	K
Intensité électrique	I, i	I	ampère	Α
Quantité de matière	n	N	mole	mol
Intensité lumineuse	I _V	J	candela	cd

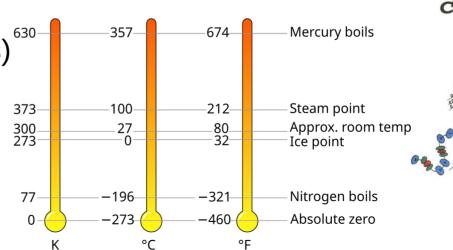
Le kelvin

- Sept unités de base caractérisant sept grandeurs physiques indépendantes – toutes les autres unités en sont dérivées
- Le **kelvin** est défini en fixant la valeur de la constante de Boltzmann $k_B = 1,380 649 \times 10^{-23}$ J.K⁻¹ (ou kg·m².s⁻².K⁻¹)
 - Donc après avoir défini le m, la s et le kg

Grandeur	Unité	Définition		
Temps	seconde	définie en fixant la valeur de la fréquence du césium, Δv Cs = égale à 9 192 631 770 Hz (s ⁻¹) (fréquence de la transition hyperfine de l'état fondamental de l'atome de césium 133 non perturbé)		
Longueur	mètre	défini en fixant la valeur de la vitesse de la lumière dans le vide, c = 299 792 458 m/s		
Masse	kilogramme	défini en prenant la valeur de la constante de Planck, h = $6,62607015\times10^{-34}\mathrm{J.s}$ (ou kg.m².s ⁻¹		
Température	kelvin	défini en fixant la valeur de la constante de Boltzmann k _B = 1,380 649 × 10 ⁻²³ J.K ⁻¹ (ou kg·m².s ⁻² .K ⁻¹)		

Le froid n'existe pas!

- En physique:
 - on parle de transferts de chaleur Q
 - on parle de **sources** « froides » et « chaudes »
 - on **compare des températures** : A est plus chaud/froid que B

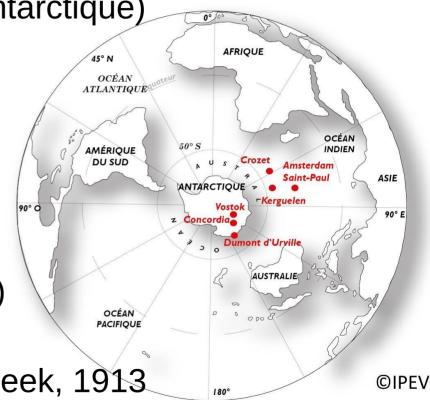

Astérix et Obélix : Mission Cléopâtre, Alain Chabat, 2002

C'est pas possible... Il fait au moins - 8000!

Mais on ne dit pas qu'un objet est « froid » (ni « chaud »)

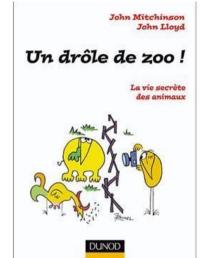
On exprime simplement sa température (plusieurs échelles)

- « Très basses températures »
 - Labo du CNRS : CRTBT → Centre de Recherches sur la Matière Condensée et les Basses Températures

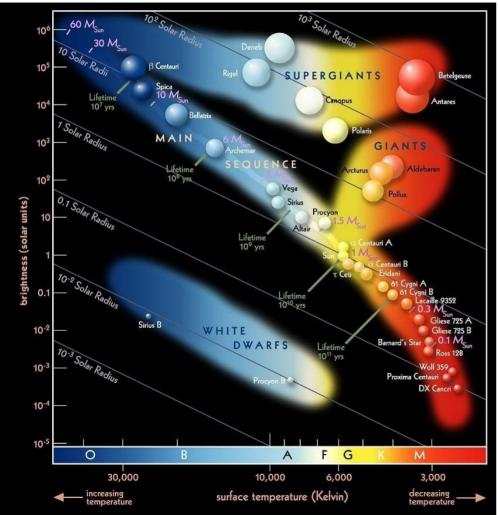

Quelques basses températures

Sur Terre: -89,2 °C (1983, Vostok, Antarctique)

Azote liquide : 77 K (- 196 °C)


Hydrogène liquide : 20 K (- 253 °C)

- Hélium (4) liquide : 4 K (- 269 °C)
- Espace interstellaire:
 « 2,7 K (- 270 °C) »
 (fond diffus cosmologique)
- Hélium (3) liquide : 0,3 K (- 272,85 °C)
- En laboratoire : 38 pK (2021)
- Record de chaleur : 57°C, Furnace Creek, 1913


L'ourson d'eau

- Ou tardigrade (« tardus gradus » = marcheur lent)
- Taille: 0,1 1 mm
- Nombreuses espèces, qui se partagent des capacités de résistance exceptionnelles → l'animal le plus résistant de la planète : survit à
 - - 272°C, + 150°C
 - P = 6 000 bars (= 6 x 10 000 m d'eau), ou 0 (espace)
 - Rayonnements mortels pour l'homme (x 1000)
 - Une absence d'oxygène (5 jours)
 - Une dessication extrême
- Se met en état de **stase** (« **cryptobiose** ») s'il n'a pas d'eau ou de nourriture
 - Remplace l'eau de son corps par un sucre (tréhalose) ~ antigel
 - Plus de 30 ans à -20°C!
 - Peut-être même 2000 ans (dans la glace) !!

Couleurs froides

 Plus un objet est chaud, plus son « blanc est froid »

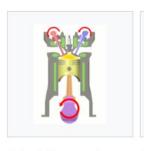
Intérêt des très basses températures

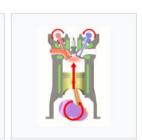
- Cryogénie = étude et production des « basses » températures \approx 120 K \approx 150°C (\sim Tp de liquéfaction des gaz de l'air)
- En physique :
 - Très peu d'agitation thermique
 - Apparition de **phénomènes quantiques** (macroscopiques) Ex : **condensat de Bose-Einstein**
 - Apparition de phénomènes invisibles aux « hautes » températures : supraconductivité, superfluidité, « supersolidité »
 - Étude de la gravitation (gravité sur une antiparticule)
- Intérêts technologiques :
 - Conduction de courant, trains à sustentation magnétique, ordinateurs quantiques, ...
- Médecine :
 - Traitement des verrues
 - C(ryoc)onservation (cryonie, cryogénisation)

Ordinateur quantique IBM

Thermodynamique

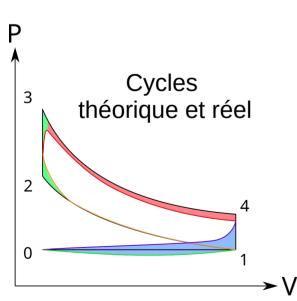
Description des moteurs à 4 temps.




Point mort haut (PMH), départ.

1 - admission.

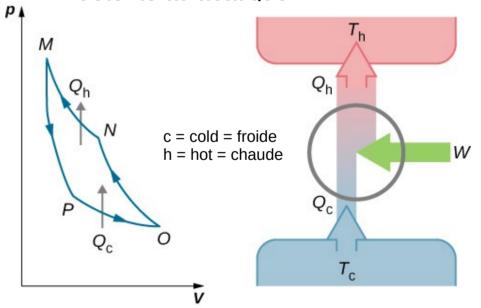
2 - compression.


3-1 - inflammation

3-2 - détente.

4 - échappement.

Cycle Beau de Rochas (moteur à explosion à 4 temps) :

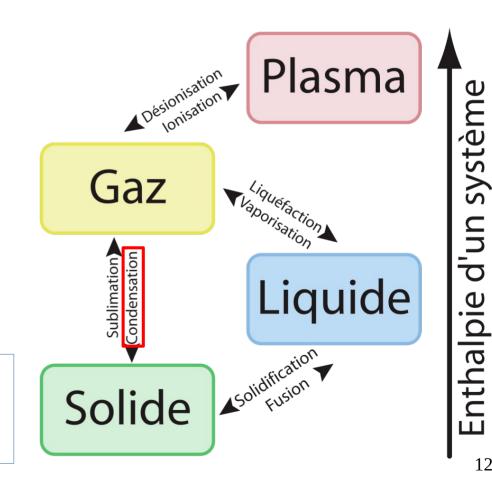

- = ensemble de « transformations thermodynamiques »
- l'admission est modélisée par une détente isobare (0-1),
- 2. la compression est supposée adiabatique (1-2),
- la combustion se déroule à volume constant (2-3),
- 4. la détente est adiabatique (3-4),
- 5. l'ouverture de la soupape est modélisée par une détente isochore (4-1),
- 6. l'échappement est modélisé par une détente isobare (1-0).

Transformation thermodynamique

- C'est une modification subie par un système entre 2 états d'équilibre
 - Réversible ou irréversible
 - Adiabatique (sans échange de chaleur), isobare, isochore, isotherme, ...
 - Isentropique = adiabatique réversible
- <u>Cycle thermodynamique</u>: ensemble de transformations successives ramenant un système à son état initial
 - Peut être (selon le sens) :
 - **Moteur** : fournit du travail grâce à 2 sources de chaleur (chaude et froide)
 - Pompe à chaleur ou machine frigorifique : déplace de la chaleur grâce à un travail fourni
 - Efficacité énergétique = énergie utile en sortie / énergie fournie en entrée
 - Rendement thermodynamique = efficacité énergétique réelle / efficacité énergétique théorique

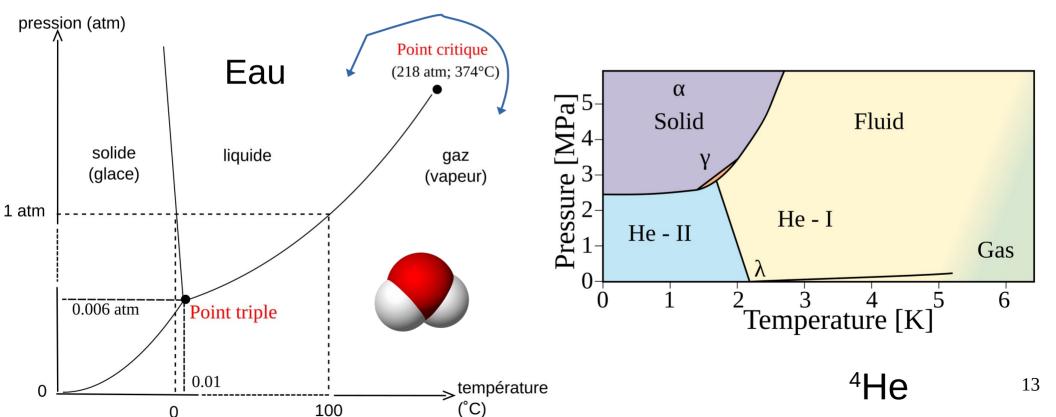
- <u>Ex :</u> cycle de Carnot (tsf. réversibles) : pour une machine frigorifique :
 - détente isotherme PO
 - compression adiabatique ON
 - compression isotherme NM
 - détente adiabatique MP

Grâce à un travail W fourni par l'extérieur, on prélève Qc à la source froide et on fournit Qh = W + Qc à la source chaude


= changement de phase d'un système physique en raison d'une variation de température, de pression, d'excitation

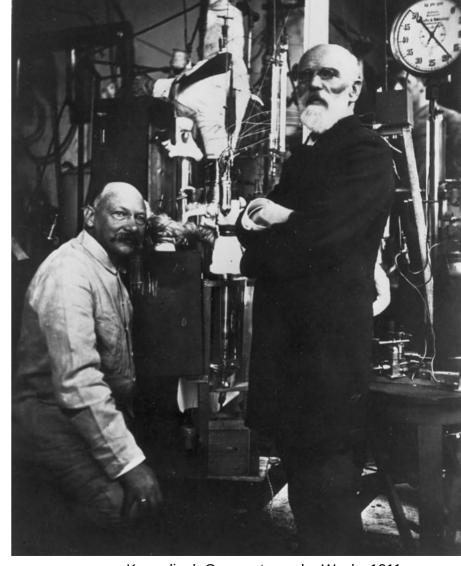
magnétique, ... → changement des propriétés du système

- **Exemples**:
 - Changements d'état
 - Changement des propriétés magnétiques
 - Supraconductivité, superfluidité
 - Condensation de Bose-Einstein


Étude mécanique et physique de froissement et dé-froissement des textiles cellulosiques à base de coton et lin

Lina Ben Hassine

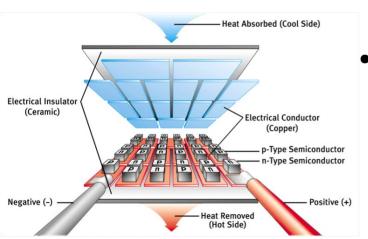
Les diagrammes de phase


 Diagrammes indiquant les différentes phase d'un corps physique, en général dans un diagramme (p, T)

Techniques

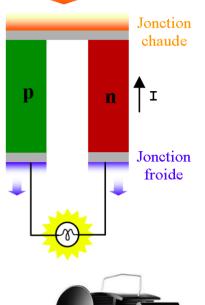
HKO prix Nobel de Physique 1913 pour « ses études des propriétés de la matière à basse température, ce qui a mené, entre autres, à la production de l'hélium liquide »

J. D. van der Waals Prix Nobel Physique 1910 (équation des gaz réels)



Kamerlingh Onnes et van der Waals, 1911

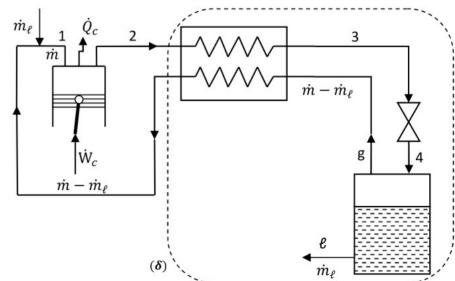
L'effet Peltier


- **Effet thermoélectrique** = déplacement de chaleur lors de la circulation d'un courant électrique dans 2 matériaux
 - Les porteurs de charge (– (n) et + (p)) perdent ou gagnent de l'énergie aux interfaces

 → ↑ ou ↓ de la température
 - Effet réversible si on inverse le sens de I

Effet Seebeck = effet inverse : apparition d'un courant électrique entre 2 plaques à Tp différente

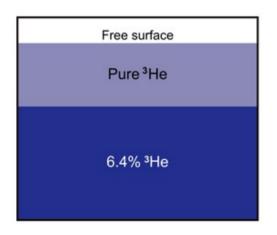
→ ventilateurs de poêles à bois

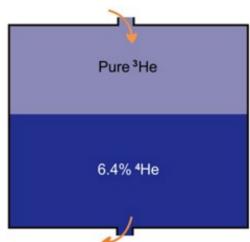

https://nimareja.fr/10-decembre-1831/

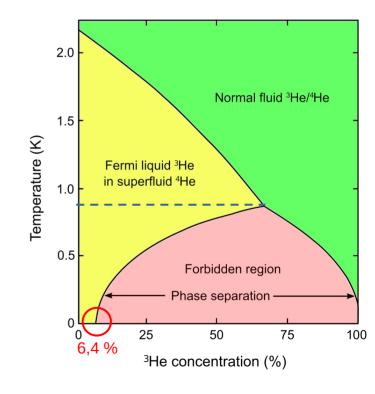
https://www.researchgate.net/figure/Modes-de-conversion-thermoelectrique-a-generation-electrique-effet-Seebeck-et-b fig1 48908258 https://www.cdiscount.com/bricolage/chauffage/ventilateur-a-chaleur-pour-cheminee-bois-poele-a-b/f-1661206-amo6914214842827.html?idOffre=4197695003#mpos=0|mp

Liquéfier un gaz

- <u>Ex</u>: **procédé Linde** (1895)
 - 1-2 : on compresse un gaz (qui chauffe, cf. pompe à vélo)
 - 2-3 : on le ramène à température ambiante (au contact du gaz sortant)
 - 3-4 : on détend (adiabatiquement) le gaz → effet Joule-Thomson : sa Tp baisse (sous le point de liquéfaction)
 - 4 : on sépare le liquide et le gaz restant
 - On recommence!
- On peut ainsi liquéfier tous les gaz, même le plus difficile : ³He (3,2 K)
- (Aujourd'hui, d'autres procédés sont utilisés)

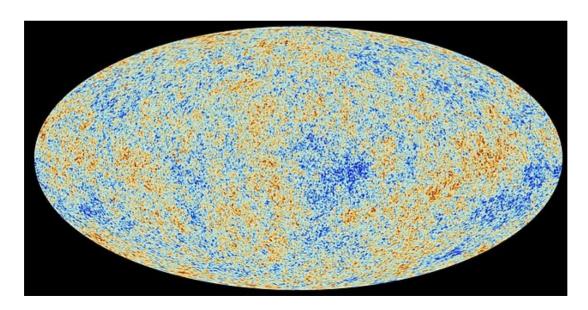

Températures d'ébullition / liquéfaction


- (équilibre liquide-gaz)
- Si on veut descendre plus bas, il faut d'autres techniques


Nom +	Formule +	Température -	
Dioxyde d'azote	NO ₂	+21,2 °C	
Dioxyde de carbone	CO ₂	-56,6 °C sous 5,12 atm	
Radon	Rn	−61,7 °C	
Protoxyde d'azote	N ₂ O	−88,5 °C	
Xénon	Xe	−108,09 °C	
Ozone	03	−111,9 °C	
Monoxyde d'azote	NO	−151,8 °C	
Krypton	Kr	−154,34 °C	
Méthane	CH ₄	−161,52 °C	
Dioxygène	02	-183 °C, oxygène liquide	
Argon	Ar	−185,85 °C	
Diazote	N ₂	-195,79 °C, azote liquide	
Néon	Ne	−246,053 °C	
Dihydrogène	H ₂	-252,76 °C, hydrogène liquide	
Hélium	He	-268,93 °C, hélium liquide	

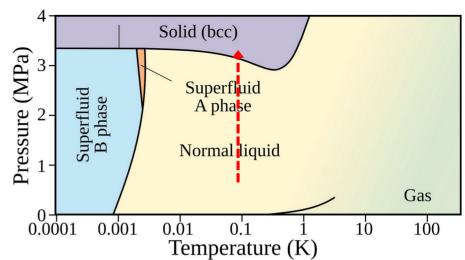
Réfrigérateur à dilution - principe

- En-dessous de 870 mK, **séparation de phases** (un peu comme l'eau et l'huile) entre ³He et ⁴He :
 - 3He ~ pur au-dessus d'un mélange 4He/3He
- On extrait le ³He du ⁴He → Du ³He pur migre dans la phase mélangée, ce qui nécessite de l'énergie (« enthalpie ») et abaisse donc la température du système
- Refroidissement continu à très basses Tp : $\sim 0.3 \text{ K} \rightarrow 3 \text{ mK}$

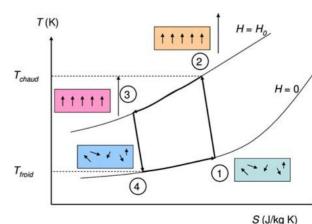


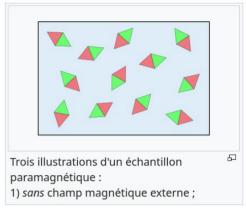
Réfrigérateur à dilution – en pratique

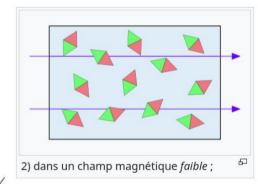
 Principe utilisé sur le satellite Planck (6 étages de refroidissement)

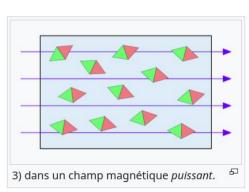

Et ordinateur quantique

L'effet Pomerantchouk

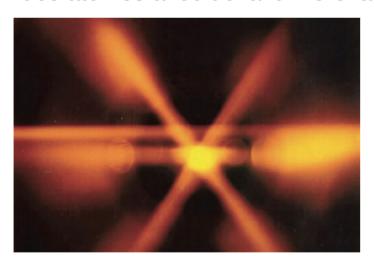

- ³He: en-dessous de 0,3 K, l'entropie du solide est supérieure à celle du liquide (~ le solide est « moins ordonné » que le liquide)
- Si on comprime, le liquide va se solidifier
- Si on comprime **adiabatiquement** (sans échange de chaleur, donc **à entropie constante**) :
 - (Rappel : l'entropie provient de l'ordre (S, L, G) des molécules et de leur mouvement)
 - L'augmentation d'entropie due à la solidification est compensée par une baisse due à la diminution de l'agitation thermique
 - = baisse de Tp : le système refroidit !
- → ~ 1 mK



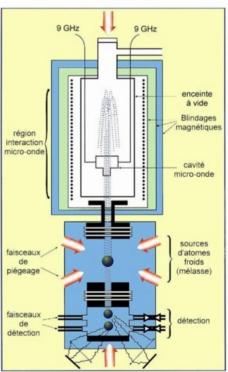



Réfrigération magnétique

- Effet magnétocalorique = changement de température d'un matériau soumis à une excitation magnétique externe
- Rappel : l'entropie d'un système mesure son désordre
- Certains matériaux sont « paramagnétiques » : leurs dipôles magnétiques (électrons) s'alignent avec le champ extérieur
 - → plus d'ordre → moins d'entropie (magnétique)
 - Si le matériau est thermiquement isolé (processus « adiabatique »), pas d'échange de chaleur avec l'extérieur donc entropie constante → augmentation de l'entropie de réseau = de l'agitation thermique = de la température
- À l'inverse, si on diminue l'aimantation, augmentation du désordre magnétique
 → baisse de l'agitation thermique
 = baisse de la température
- « désaimantation adiabatique »
 → 10⁻⁶ K (µK)

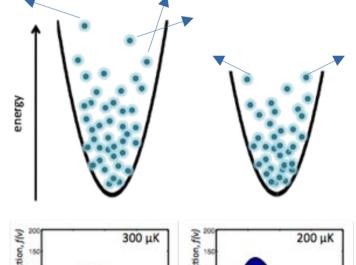


Refroidissement d'atomes par laser


- Atomes dans des gaz : pour avoir $T \rightarrow 0$, on fait $v \rightarrow 0$
- Rappel : un atome peut **absorber** un photon $k_B T \approx \bar{E} \bar{G}$ de fréquence $\nu \to \Delta E = h \nu$
- On construit un dispositif permettant de ralentir les atomes grâce à l'effet Doppler (la fréquence perçue du photon dépend de la vitesse)
- Permet d'atteindre : ~ μK, nK
- 3.1
- 3.2
- 1. Atome **stationnaire**, photon pas absorbé
- 2. Atome s'éloignant, photon pas absorbé
- 3.1 Atome se rapprochant, photon absorbé
- 3.2 → atome excité ralenti selon cette direction
- 3.3 l'atome se désexcite en émettant un photon dans une direction aléatoire

Refroidissement d'atomes par laser

- On place le gaz au centre de 6 lasers opposés selon les 3 directions (x, y, z)
- \rightarrow « mélasse optique » = gaz tridimensionnel d'atomes froids (v : 300 m.s⁻¹ \rightarrow < ~ 0,1 m.s⁻¹)
- On peut en faire des horloges très précises (« fontaines d'atomes », PHARAO (10-16))
- On peut ajouter des aimants = pièges magnéto-optiques (1980's)
- PNP 1997 : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips « pour le développement de méthodes pour refroidir et piéger des atomes avec de la lumière laser »



Refroidissement par évaporation

- Pour un gaz d'atomes piégés, donc après refroidissement et piégeage
- Principe:
 - Il y a toujours un peu de gaz au-dessus d'un liquide (**pression de vapeur saturante**)
 - L'évaporation d'un liquide coûte de l'énergie au système (« enthalpie de vaporisation ») : les molécules qui restent dans le liquide sont moins énergétiques = plus froides
 - Transpiration (+ ventilation)
 - Souffler sur son thé
- On limite le potentiel confinant afin de laisser les atomes les plus énergétiques s'échapper → baisse de la Tp
- Vitesses de l'ordre de 1 mm/s 1 cm/s
 - → Tp de l'ordre du μK
 - → Horloges très précises (à fontaines d'atomes froids)
 - → condensat de Bose-Einstein (100 nK)

speed (m/s)